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Abstract 

Previous studies have documented how forests influence snow at fine spatial scales, but none 

have documented the influence that existing forest-snow variability has on streamflow. To test 

how much forest-controlled snow variability influences streamflow, a tiling parameterization 

based on classifications from high-resolution (1-3 m) vegetation maps was incorporated into the 

Distributed Hydrology and Soil Vegetation Model (DHSVM). Within each grid cell (90-150 m), 

the tiling parameterization simulated forest-snow variability with four independently evolving 

snowpacks. Each tile had unique radiation conditions to represent conditions underneath the 

canopy, in exposed areas, and along north- and south-facing forest edges. This tiled 

parameterization was used to test where and when detailed forest-snow modeling should be 

considered further and where and when the impacts are too small to be worth the effort. To test 

this, tiled model simulations of streamflow were compared to non-tiled model simulations in the 

Sierra Nevada, CA, the Jemez Mountains, NM, and the Eastern Cascades, WA. In Tuolumne, 

CA, the tiled model simulated little difference in grid cell average SWE, and late-season 

streamflow decreased by 3-4% compared to the non-tiled model. In Jemez, NM, the tiled model 

decreased late-season streamflow by 18% due to increased sublimation. In Chiwawa, WA, the 

tiled model increased late-season streamflow by 15% due to high shortwave radiation attenuation 

and less longwave radiation enhancement from the forest. Furthermore, within the Chiwawa, a 

substantial silvicultural practice was synthetically implemented to increase the north-facing 

edge’s fractional area. This silvicultural experiment, which used the same fractional forest area 

in all simulations increased late-season streamflow by 35% compared to tiled model simulations 

that did not represent forest edges. In conclusion, representing forest-SWE variability had an 

effect on late-season streamflow in some watersheds but not in others based on the fractional 

area of the forest edges, forest characteristics, and climate conditions.   



1. Introduction: 

Across multiple climates, significant hillslope scale (10 - 100 m) variability in snow depth 

occurs at forest edges and between exposed and forested areas (Broxton et al., 2015; Clark et al., 

2011; Currier & Lundquist, 2018; Hiemstra et al., 2006). Snow depth variability between north- 

and south-facing forest edges is driven primarily by differences in shortwave and longwave 

radiation (Golding & Swanson, 1978; Lawler & Link, 2011; Musselman et al., 2008, 2015; 

Seyednasrollah & Kumar, 2014; Webster et al., 2016, 2017; Woo & Giesbrecht, 2000). 

Furthermore, snow depth differences between areas directly underneath the canopy and exposed 

areas are driven by differences in radiation and from subsequent loss after canopy snow 

interception (Dickerson-Lange et al., 2015, 2017; Lundquist et al., 2013; Mazzotti et al., 2019; 

Moeser et al., 2016; Storck, 2000; Varhola et al., 2010).  

Many spatially distributed hydrologic models implicitly represent forest characteristics and 

their effect on radiation within a model element. Recent work has suggested the importance of 

explicitly representing radiation and SWE variability within forests to correctly simulate 

snowmelt. For instance, prior studies have shown that at coarser spatial scales, models that use 

bulk canopy metrics and do not account for subgrid snow cover have a different net energy 

balance and snow melt rate than those at very high resolution (e.g. 1 m)  (Broxton et al., 2015; 

Mazzotti et al., 2020, 2021). Furthermore, previous work, primarily focused on non-forested 

areas (Brauchli et al., 2017; Luce et al., 1998; Lundquist et al., 2005; Lundquist & Dettinger, 

2005; Sexstone et al., 2020; Seyfried & Wilcox, 1995), has shown that improved representation 

of snow heterogeneity increases modeled late-season streamflow. However, previous studies 

have not documented how a finer-scale representation of forest-snow interactions impacts basin-



scale streamflow and whether that impact varies across regions with different climates and 

different forest cover. 

Here, we implement a tiling parameterization that was first introduced in Currier and 

Lundquist (2018) to explicitly represent forest-snow processes and their effect on sub-grid snow 

variability in the Distributed Hydrology and Soil Vegetation Model (DHSVM) (Wigmosta et al., 

1994, 2002) (Section 3). We then test the degree to which this explicit representation changes 

streamflow in watersheds located in the Sierra Nevada, CA, the Jemez Mountains, NM, and the 

Eastern Cascades, WA. These sites represent a gradient from dry-sparse-forest to wet-dense-

forest. While lidar and streamflow observations were used extensively to ensure the model 

simulations captured reality (Section 3.d., Section 4.a.ii), our objective was to test the impact of 

different forest-snow representations within a model on streamflow rather than to achieve a 

perfectly calibrated model. A driving and fundamental question was where and when such 

detailed forest-snow modeling should be considered further and where and when the impacts are 

too small to be worth the effort. 

With these goals in mind, we conducted three general experiments. First, within two of the 

watersheds, Tuolumne, CA, and Jemez, NM, we compared simulated SWE to lidar-derived SWE 

in each tile to evaluate the model’s representation of subgrid variability (Section 4.a.ii.). At these 

locations, we showed how radiation differences led to subgrid SWE variability (Section 4.a.iii.). 

In addition, we quantified the effect that the tile parameterization had on grid cell average SWE 

(Section 4.a.i), evapotranspiration (Section 4.a.i, Section 4.b.), and streamflow (Section 4.b.), 

compared to the implicit forest parameterization within the original, non-tiled version of 

DHSVM, which used a single snowpack per grid cell.  



 Second, we also applied the tiled model to a watershed in the Eastern Cascades of 

Washington State - the Chiwawa Watershed (Section 4.c.). Similar to the other watersheds, in the 

Chiwawa, we explored the tiled model’s effect on grid cell average SWE and late-season 

streamflow compared to the non-tiled version of DHSVM. In addition, the Chiwawa was heavily 

forested, and silvicultural prescriptions are actively being explored in Eastern Washington to 

decrease wildfire risk, maximize snow retention, and increase late-season streamflow for salmon 

spawning (Churchill et al., 2013; Haugo et al., 2015; Hessburg et al., 2015; WDNR, 2018; 

Wigmosta et al., 2015). Motivated by silvicultural interests within the region, DHSVM was 

recently modified to synthetically introduce forest gaps within the Chiwawa Watershed, which 

led to an increase in late-season streamflow (Sun et al., 2018). We build off these results in the 

discussion and synthetically alter the forest to implement east-west oriented clearings (Section 

5.c.). Our forest management strategy differed from Sun et al. (2018), and we focused on how 

the representation of subgrid-SWE variability affects late-season streamflow within the managed 

forest rather than comparisons between managed and unmanaged forests. 

Third, within all three watersheds, and within the silvicultural experiment, we determined the 

relative importance of representing forest edges (Section 5.b.). To do so, we adapted the tiled 

model to only represent forest and exposed areas (two snowpacks) and no longer represent forest 

edges. We then compared streamflow simulations that represented four snowpacks per grid cell 

(north- and south-facing forest edges, exposed, and forested areas) to simulations that only 

represented two snowpacks per grid cell (exposed and forested areas). 



2. Location and Data 

a.  Site overviews 

We chose three watersheds for our study that differed in forest characteristics, meteorological 

conditions, and elevation distributions, but had publicly available lidar data (Figure 2; Table 1). 

Tuolumne, CA was the highest elevation location and contained primarily lodgepole pine (Pinus 

contorta) and generally had the shortest trees. In Tuolumne, CA, we focused on the Upper 

Tuolumne due to available streamflow observations, where the forest cover was less than half the 

watershed. In Jemez, NM there were a variety of different tree species such as Douglas fir 

(Pseudotsuga menziesii), white fir (Abies concolor), blue spruce (Picea pungens), limber pine 

(Pinus flexilis) and ponderosa pine (Pinus ponderosa). The trees in the Jemez were less dense 

than in the Upper Tuolumne and generally more dispersed. Furthermore, Jemez was the driest 

location and received the highest amounts of incoming shortwave radiation throughout the winter 

(Table 1). Chiwawa, WA was the wettest location and received the least amount of incoming 

shortwave radiation. The Chiwawa primarily consisted of grand fir (Abies grandis) at low 

elevations and subalpine firs (Abies lasiocarpa) at high elevations. The Chiwawa had the densest 

and tallest canopy, with the greatest spatial coverage in forests (Table 1).  

b. Model Input Data 

In Tuolumne, maps describing the vegetation were provided from lidar data (Painter et al., 

2016), and the National Land Cover Database’s (NLCD) classifications (Homer et al., 2015)  

(Section 2d). Model runs were conducted at a 150-m spatial resolution and a one-hour timestep 

for water year (WY) 2016 as this was a normal SWE year. 



In the Jemez and Chiwawa, maps describing the vegetation classification were provided from 

lidar data (Department of Natural Resources, 2020; Harpold et al., 2014), imagery from 

the National Agriculture Imagery Program (NAIP), and NLCD landcover classifications (Section 

2d). In the Jemez, model runs were conducted at a 150-m spatial resolution and a one-hour 

timestep for WY 2010 due to the snow-on lidar date. In the Chiwawa, model input data and 

configurations were consistent with Sun et al. (2018), except for the vegetation maps to make the 

results transferrable. Model runs were conducted for WY 2011 at a 90-m spatial resolution and a 

one-hour timestep to be consistent with Sun et al. (2018).  

Lastly, DHSVM forcing data is described in Text S1 for brevity within the main text.  

c. Measured Snow Depth and Streamflow 

Distributed snow depth data were derived from lidar data in the Upper Tuolumne at 3-m 

spatial resolution (Painter et al., 2016), and for a subset of the Jemez River Watershed at 1-m 

spatial resolution (Harpold et al., 2014) (Figure 2). Lidar-derived snow depth data were not 

available for the Chiwawa Basin. Lidar-derived snow depth generally has errors less than 10-cm 

(Painter et al., 2016) and the errors in the forest were comparable to errors in exposed areas 

(Currier et al., 2019; Mazzotti et al., 2019). DHSVM simulated SWE, and therefore, snow 

density was derived using methods in Sturm et al. (2010) in combination with Sturm et al. 

(1995), based on which the lidar-derived snow depth was converted to SWE. Additional SWE 

observations exist at snow pillows in all three basins (Figure 2). Snow pillows were used for 

model calibration in exposed regions (Section 3d). USGS stream gage data were provided from 

the Jemez River Near Jemez, NM (USGS 08324000) and the Chiwawa River Near Plain, WA 

(USGS 12456500) gages. Streamflow data in the Upper Tuolumne were provided from the 



network described in Lundquist et al. (2016), where we focused on the Highway 120 gage 

(Figure 2, top panel).  

d. Vegetation maps 

Lidar derived canopy height maps were used to classify canopy grid cells at a 1-3 m spatial 

resolution. However, in the Jemez and Chiwawa watersheds, 1-m gridded lidar data were only 

available over a subset of the watershed (Figure 2). In areas where lidar data were not available, 

canopy grid cells were identified using the Normalized Difference Vegetation Index (NDVI) 

from 4-band NAIP imagery at 1-m spatial resolution (Figure 3). Canopy grid cells were 

identified when the NDVI was greater than a threshold value. The threshold value was 

determined based on the greatest agreement between the lidar-derived canopy mask and the 

NDVI derived canopy mask (Figure 3) resulting in NDVI thresholds of 0.27 and 0.02 in the 

Jemez and Chiwawa, respectively. Differences in NDVI thresholds were likely due to a 

combination of differences in species type (Section 1a), plant health, the forest understory, and 

the amount of mosses and twigs within the trees (Huemmrich & Goward, 1997; Xiao & 

McPherson, 2005). 

NDVI- and lidar-derived canopy masks were classified into north- and south-facing edges 

using methods described in Currier and Lundquist (2018). The classification algorithm searched 

out a specified distance directly north and south from a classified forest grid cell, which was 

classified based on a lidar derived canopy height map (>2 m) or the previously described NDVI 

method. If the classified grid cell was not a forest grid cell and was within the search distance, 

the grid cell was classified as either a north- or south-facing forest edge. Where north- and south-

facing forest edges overlapped, we classified the grid cell as an exposed area based on visual 

inspection of lidar-derived snow depth data. Overlapping areas showed both relatively low snow 



depths on the south side of the trees and areas of higher snow depth on the north side. Therefore, 

on average, overlapping areas showed values closer to what was represented in exposed areas. 

Search distances were based on tree height. Where canopy height data were not available 

(NDVI classification), the average tree height from the lidar domain was used. Forest-edge 

search distances were two-tree heights to the north and 3 m to the south. Currier and Lundquist 

(2018) showed that statistically significant snow depth differences existed between north- and 

south-facing edges when the search distance was two-tree heights for the Jemez and Upper 

Tuolumne. In contrast to Currier and Lundquist (2018), we specified the south-facing forest edge 

as 3 m because enhanced longwave radiation (from the south-facing side of the tree receiving 

more solar radiation) has a length scale of around 3 m, irrespective of tree height (Musselman & 

Pomeroy, 2017).  

The high-resolution classification maps (1-3 m) were aggregated to the model resolution (90-

150 m) to create four unique, fractional area maps. Each map represented the grid cell’s 

fractional area that was exposed, forested, or was a part of a north- and south-facing edge. The 

sum of all four maps was equal to one. 

After aggregation to 90-150 m grid cells, the fractional vegetation maps and associated 

vegetation classifications used within DHSVM (NLCD 2011 vegetation classifications) were 

adjusted. For instance, identifying canopy grid cells from NAIP imagery was particularly 

problematic in riparian areas or alpine areas that were noticeably green after snow melt. These 

areas had high NDVI values but did not contain vegetation greater than 2 m (Figure 3). To filter 

out erroneous fractional vegetation areas the NLCD 2011 vegetation classifications were used. If 

the NLCD 2011 map was not a deciduous, evergreen, or mixed forest, but the NAIP imagery 

classified part of the grid cell as forested, the fractional area for the exposed map was set equal to 



one (fractional forest, north, and south-facing maps were equal to zero). Lastly, after filtering 

with the NLCD 2011 map, if the fractional forest area was greater than zero, the vegetation 

classification used within DHSVM was relabeled an evergreen forest for simplicity.  

3. Methods 

a. Model Description  

DHSVM (version 3.2) is a process-based, spatially distributed model that explicitly solves 

the water and energy balance at grid cell scales of 30-150 m. DHSVM simulated the physical 

processes that govern surface and subsurface runoff generation, such as canopy interception, 

evapotranspiration, snow accumulation and melt, and soil water dynamics (Wigmosta et al., 

1994, 2002). DHSVM simulated SWE at the ground surface within a grid using a two-layer 

energy and mass balance snow model (Wigmosta et al., 1994, 2002). It explicitly accounted for 

the influence of topography and vegetation cover on snowpack dynamics. In grid cells with a 

canopy, DHSVM also simulated canopy snow interception, sublimation, mass release, and melt 

with a one-layer mass-and energy balance canopy model (Storck, 2000; 2002; Wigmosta et al., 

1994, 2002). Wind speeds in forested grid cells were scaled from the reference height to two 

meters using an exponential profile, while wind speeds in grid cells that were in exposed areas 

were scaled using a logarithmic profile (Andreadis et al., 2009; Storck, 2000). The 

evapotranspiration rate was calculated using a Penman-Monteith approach (Monteith, 1965; 

Wigmosta et al., 1994), and DHSVM allowed surface and saturated subsurface flow to be 

transported to neighboring grid cells. For more details see Wigmosta et al., (1994, 2002). 



b. Radiation Balance 

i. Non-tiled Model 

In the non-tiled framework of DHSVM, there was a single snowpack that evolved per grid 

cell. Net shortwave radiation at the snow/soil surface (understory) for a grid cell with an 

overstory was calculated as follows: 

  𝑆𝑊𝑛𝑒𝑡
𝑢𝑛𝑑𝑒𝑟 = (1 − 𝛼) ∗ (𝑆𝑊𝑖𝑛 (1 − 𝐹) + 𝐹(𝑆𝑊𝑑𝑖𝑟𝜏 + 𝑆𝑊𝑑𝑖𝑓𝑓𝜏𝑑)) (1) 

where incoming shortwave radiation (𝑆𝑊𝑖𝑛) was partitioned into direct and diffuse 

components, 𝑆𝑊𝑑𝑖𝑟 and 𝑆𝑊𝑑𝑖𝑓𝑓, respectively. The radiation partitioning was based on regression 

coefficients and a ratio between the incoming atmospheric shortwave radiation and the solar 

constant. F is the fractional forest cover parameter, which varied spatially using methods 

discussed in section 2d (Figure 2). 𝛼, is the albedo for either the snowpack or understory 

vegetation, depending on whether snow was present. 𝜏 is the canopy transmittance coefficient for 

direct radiation, and 𝜏𝑑 is the overstory’s transmittance coefficient for diffuse radiation. 𝜏𝑑 is a 

input parameter that varied based on vegetation type, while 𝜏 was calculated based on tree height 

(H), the sun’s elevation angle (el), and an extinction coefficient (k). k is an input parameter 

which varied monthly and by vegetation type. 

  𝜏 = 𝑒𝑥𝑝 (
−𝑘∗𝐻

𝑠𝑖𝑛 (𝑒𝑙) 
)  (2) 

 
Outgoing and incoming longwave radiation for a grid cell with a canopy was calculated for 

the understory or ground snowpack as follows: 

 𝐿𝑜𝑢𝑡
𝑢𝑛𝑑𝑒𝑟 =  𝜎𝑇𝑠𝑟𝑓

4  (3) 

 

 𝐿𝑖𝑛
𝑢𝑛𝑑𝑒𝑟 =  𝐿𝑑(1 − 𝑉𝑓) +  𝜎𝑇𝑐𝑎𝑛

4𝐹  (4) 
 



where 𝐿𝑑, is the incoming atmospheric longwave radiation, 𝜎 is the Stefan-Boltzmann constant, 

𝑇𝑐𝑎𝑛 is the canopy temperature, which was equal to the air temperature, 𝑇𝑠𝑟𝑓, is the snow or soil 

temperature, and Vf is 𝐹 multiplied by a tunable canopy view adjustment factor (Thyer et al., 

2004). The canopy view adjustment factor accounted for canopy gaps within the grid cell from 

the spacing of individual trees, or air space within the tree itself due to the spacing of the 

branches and needles or leaves. In the case where there is no overstory, the incoming longwave 

for the understory is 𝐿𝑑. 

Net radiation was calculated as: 

 𝑁𝑒𝑡 𝑅𝑎𝑑 = 𝑆𝑊𝑛𝑒𝑡
𝑢𝑛𝑑𝑒𝑟 + 𝐿𝑖𝑛

𝑢𝑛𝑑𝑒𝑟 − 𝐿𝑜𝑢𝑡
𝑢𝑛𝑑𝑒𝑟  (5) 

Therefore, for a grid cell that had a canopy, radiation variability within a DHSVM grid cell 

was a weighted average between radiation in an exposed area and radiation underneath the 

forest, where the weights per grid cell were based on the fractional forest cover parameter, 𝐹. 

Note that snow albedo, which was a function of snow surface temperature and the days since 

snowfall, was not a weighted average based on 𝐹, as there is a single snowpack that evolves per 

grid cell. 

ii. Tiled model 

Within the tiled model, there are up to four snowpacks per grid cell, each tile evolved with a 

different albedo, snow surface temperature, and pack temperature. Net shortwave radiation for 

each tile was modeled as follows (Figure 4) and equations 6-9 are organized from the tile that 

received the least amount of net shortwave radiation to the most amount of net shortwave 

radiation. 

 𝑆𝑊𝑛𝑒𝑡
𝐹𝑜𝑟𝑒𝑠𝑡 = (1 − 𝛼𝐹𝑜𝑟𝑒𝑠𝑡) ∗ (𝑆𝑊𝑑𝑖𝑟𝜏 + 𝑆𝑊𝑑𝑖𝑓𝑓𝜏𝑑)  (6) 



 𝑆𝑊𝑛𝑒𝑡
𝑛𝑓

= (1 − 𝛼𝑛𝑓) ∗ (𝑆𝑊𝑑𝑖𝑟𝜏𝑑𝑖𝑟,𝑛𝑓 + 𝑆𝑊𝑑𝑖𝑓𝑓𝜏𝑛𝑓)   (7) 

 

 𝑆𝑊𝑛𝑒𝑡
𝑠𝑓

= (1 − 𝛼𝑠𝑓) ∗ (𝑆𝑊𝑑𝑖𝑟 + 𝑆𝑊𝑑𝑖𝑓𝑓𝜏𝑠𝑓)  (8) 

   

 𝑆𝑊𝑛𝑒𝑡
𝐸𝑥𝑝𝑜𝑠𝑒𝑑 = (1 − 𝛼𝐸𝑥𝑝𝑜𝑠𝑒𝑑) ∗ (𝑆𝑊𝑑𝑖𝑟 + 𝑆𝑊𝑑𝑖𝑓𝑓)  (9) 

 
𝜏𝑛𝑓 and 𝜏𝑠𝑓 are model input parameters, which were both set to 0.75 in this study to represent 

that 75% of the diffuse radiation was incident at the snow/soil surface. Within the forest tile and 

in the non-tiled model 𝜏𝑑 was set to 0.215 as more diffuse radiation is attenuated underneath the 

canopy than at the edge. Direct radiation attenuation at the northern edge was similar to the 

forest (Equation 6) but we introduce, 𝜏𝑑𝑖𝑟,𝑛𝑓, which was the direct radiation transmittance at the 

north-facing edge, to allow for more direct shortwave radiation at the north-facing edge than 

directly underneath the forest. 𝜏𝑑𝑖𝑟,𝑛𝑓 was calculated as the product of 𝜏𝑑𝑖𝑟,𝑛𝑓 =  𝜏 +  𝜏 ∗ 𝜏𝑚𝑢𝑙𝑡, 

where 𝜏𝑚𝑢𝑙𝑡 is a user defined multiplicative scalar. 𝜏𝑑𝑖𝑟,𝑛𝑓 was capped at 1.0 and does not vary 

with time of year for simplicity. Net shortwave radiation for the forest (Equation 6) and exposed 

areas (Equation 9) were based on the forest and exposed components from equation 1 (Figure 4). 

Net shortwave radiation at the south-facing edge received direct solar radiation that was not 

attenuated (Figure 4), but 25% of the diffuse radiation was attenuated by the forest due to the 

reduced sky view from the forest to the north. 

Outgoing longwave radiation had a similar form to equation (3) for all tile components. 

Incoming longwave radiation for the forest and exposed regions was modeled identical to 

equation (4), where F was equal to 1 for the forest tile, and in the exposed tile F was equal 0. 

Incoming longwave radiation at north- and south-facing forest edges was calculated similar to 

equations 3-4, but instead 𝐹 was replaced by additional input parameters, Fnf
 and Fsf. Fnf

 and Fsf 

weight the magnitude to which the forest edge receives longwave radiation from the forest and 

the atmosphere. 



 𝐿𝑖𝑛
 𝑛𝑓

=  𝐿𝑑(1 − 𝐹𝑛𝑓) +  𝜎𝑇𝑐𝑎𝑛
4𝐹𝑛𝑓 (10) 

 

 𝐿𝑖𝑛
 𝑠𝑓

=  𝐿𝑑(1 − 𝐹𝑠𝑓) +  𝜎𝑇𝑐𝑎𝑛
4𝐹𝑠𝑓 (11) 

 
Fnf

 and Fsf were user supplied. Note that Fnf
 and Fsf are not the same as the grid cell’s fractional 

area for north- and south-facing areas but rather are used to control how much longwave 

radiation is incident on the north- and south-facing snowpacks, respectively. 

In the forest tile’s longwave calculation, F is set to one and then scaled by the canopy view 

adjustment factor to represent air space within the canopy (section 3.b.i.). Therefore, for a tiled 

model that only contains exposed and forest tiles, the grid cell average incoming shortwave 

radiation and longwave radiation is the same as the non-tiled model. However, the net shortwave 

radiation and longwave radiation are not the same as the non-tiled model because the different 

amounts of radiation incident on the two snowpacks lead to each tile evolving with a different 

albedo, snow surface temperature, and pack temperature.  

Model parameters, 𝐹𝑛𝑓, 𝐹𝑠𝑓, and 𝜏𝑚𝑢𝑙𝑡were adjusted in Jemez and Tuolumne independently 

so that simulations from the calibrated model would match the mean of the lidar-derived SWE 

for each tile’s classification within the grid cell (Table 2). For instance, using the high-resolution 

classification within a grid cell (Section 2d), we calculated the mean of the lidar-derived SWE 

observations for the north-facing edge to compare with the simulated north-facing SWE at a 

particular grid cell. In Tuolumne, we used multiple lidar flights to look at observed and 

simulated SWE throughout the ablation season and near peak SWE. In the Chiwawa, we use 

model parameters from both Tuolumne and Jemez, as lidar-derived SWE observations in the 

Chiwawa were not available (Table 2). 

For tiled grid cells, the north-facing, south-facing, and exposed tiles had wind speeds and the 

aerodynamic resistance (before a stability correction) scaled based on a weighted average 



between winds experienced in the open and under the continuous canopy. We set the weight 

equal to the forest’s fractional area per grid cell, which was determined from the lidar and NAIP 

data, similar to Sun et al. (2018). The tiling parameterization did not account for wind direction 

and therefore did not explicitly account for wind sheltering. Furthermore, snow processes related 

to snow transport or preferential deposition were not accounted for within DHSVM, although we 

acknowledge that these processes are often important to represent (Brandle, J.R., Finch, 1991; 

Hiemstra et al., 2002, 2006; Luce et al., 1998; Webb et al., 2020). 

c. Mass Balance 

In the tiled model, the forest tile was the only tile where canopy snow interception was 

simulated. Canopy snow interception for the forest tile was consistent with the original DHSVM 

framework and is described in Storck (2000) and Wigmosta et al. (1994). In the tiled model, the 

F parameter was again set to one to ensure that the tiled model had the same fraction of 

precipitation intercepted throughout the grid cell as the non-tiled model. 

Each tile simulated evapotranspiration, using a Penman-Monteith approach when snow was 

absent in the tile except for the forest tile (Monteith, 1965; Wigmosta et al., 1994, 2002). The 

forest tile allowed for evapotranspiration from the overstory while snow was present in the 

understory. Total evapotranspiration includes soil evaporation, transpiration, and canopy 

evaporation. Since each tile evolved its own independent snowpack, each tile melted out at a 

different time, therefore evapotranspiration began at different times for each tile. Each tile’s flux 

of evapotranspiration, sublimation, snowmelt, and soil moisture were aggregated based on a 

weighted average that used each tile’s fractional area as a weight. Grid cell average snowmelt 

was added to total surface water input, which infiltrated into the grid cell average soil reservoir 

using methods described in Wigmosta et al. (1994). At the start of the next time step, each layer 



of each tile’s soil moisture reservoir was reset based on the grid-cell average soil moisture for 

each soil layer, assuming that lateral fluxes caused this to equilibrate quickly within the 90-150 

m grid cell.  

d. Model Calibration and Baseline Simulations 

The original, non-tiled version of DHSVM was manually calibrated at the three sites to 

provide reasonable simulations of SWE and streamflow for three water years. Therefore, model 

calibration refers to adjusting parameters within the non-tiled version of DHSVM and does not 

reference any adjustments of parameters that are specific to the tiled model (Section 3b.ii.). 

DHSVM was first calibrated to simulate SWE at snow pillow locations within the basin (Figure 

2; Figure 5). Afterwards, the model was manually calibrated against streamflow observations 

using the Nash Sutcliffe’s Efficiency (NSE) metric (Figure 5). More details on model parameter 

decisions and differences amongst model parameters between basins are provided in the 

supplemental material (Cristea et al., 2014; Cuo et al., 2011; Daly et al., 2008; Dingman, 2002; 

Du et al., 2014; Homer et al., 2015; Meyer et al., 1997; Small & McConnell, 2008; Storck, 2000; 

Sun et al., 2018; Thyer et al., 2004; Wigmosta et al., 1994; Zhao et al., 2009). All non-forest 

parameters were held constant between the tiled and non-tiled runs. 

4. Results 

a. Single Grid Cell: SWE and Energy Balance Evaluation at Tuolumne and Jemez 

i. Tiled Model vs. Non-Tiled Model: Grid Cell Average SWE 

Simulated grid cell average SWE in Tuolumne and Jemez led to similar snow disappearance 

dates between the tiled and non-tiled model (Figure 6a,b black solid vs. gray dashed lines). At 



the Tuolumne evaluation site, Dana Meadows South, the tiled model had a snow disappearance 

date 1 day later than the non-tiled model (Table 3). Similarly, at the evaluation site in Jemez, 

NM, the tiled model had the same snow disappearance date as the non-tiled model. Furthermore, 

the tiled and non-tiled model simulated similar peak SWE values (Table 3).  

ii. Tiled Model: Subgrid SWE Comparisons to Observations 

At both Tuolumne and Jemez, the tiled model simulated reasonable SWE variability 

compared to the observed variability within the grid cell from the lidar observations (Figure 

6a,b). For instance, the rank order of the lidar-derived SWE observations matched the rank order 

of simulated SWE in each tile. At both locations, the north-facing edge accumulated the most 

SWE, while the forest tile simulated the least amount of SWE at peak (Table 3). South-facing 

edges accumulated more SWE than the forest tile, but in both locations, south-facing edges 

melted faster than the forest tile. In Tuolumne, the south-facing edge melted out 20 days before 

the tiled model’s grid cell average and 19 days before the north-facing edge. The slowest melt 

rate in Tuolumne occurred in the forest, and therefore snow disappeared from the forest last, 

which was consistent with the lidar observations (Table 3). At Jemez, the slowest melt rates also 

occurred in the forest. This slow melt rate led to a melt out date 4 days later than in exposed 

areas, which was consistent with previous findings (Harpold et al., 2015; Molotch et al., 2009). 

Furthermore, in Jemez, the south-facing edge melted out 30 days earlier than the north-facing 

edge, with snow disappearing from the north-facing edges last, which was also consistent with 

previous work (Musselman et al., 2008). 



iii. Tiled Model: Radiation Conditions Drove Subgrid SWE Variability 

Subgrid SWE variability amongst north-facing, south-facing, and exposed tiles was driven by 

differences in net shortwave radiation, incoming longwave radiation, and differences between 

each tile’s snow surface temperature (Figure 6). For instance, within the north-facing, south-

facing, and exposed tiles, the rank order in net radiation during daylight hours was inversely 

related to the snow disappearance dates (Figure 6i,j). The forest tile accumulated less SWE, due 

to forest-snow interception and subsequent loss, but contained relatively slower melt rates due to  

lower amounts of incoming shortwave radiation from canopy shading. At both locations, the 

forest tile had the lowest amount of net shortwave radiation followed by the north-facing edge 

(Figure 6c,d). Tuolumne’s north-facing edge experienced relatively higher net shortwave 

radiation than Jemez because Tuolumne had a higher 𝜏𝑚𝑢𝑙𝑡 , which resulted from tuning the 

model parameter to match the observed SWE distribution (Table 2). At both locations, the south-

facing edge tile experienced slightly less net shortwave radiation than exposed regions due to the 

attenuation of diffuse radiation. The incoming longwave radiation at the north- and south-facing 

forest edges were similar due to similar 𝐹𝑠𝑓 and 𝐹𝑛𝑓 values (Table 2, Figure 6e,f).  

iv. Single Grid Cell: Hydrologic Fluxes at Tuolumne, CA and Jemez, NM 

In Tuolumne, grid cell average hydrologic fluxes were similar between the tiled and non-tiled 

model (Figure 7a). For instance, the tiled model simulated similar amounts of total snowmelt, 

evapotranspiration, sublimation, saturated flow, and infiltration excess flow. Furthermore, 

temporal changes in soil moisture were similar between the two models. The tiled model’s soil 

moisture content increased earlier due to the south-facing edge melting out sooner than the non-

tiled model. Furthermore, there were subtle differences in the soil moisture drawdown rates due 

to slight increases in the tiled model’s evapotranspiration rates after the snow disappeared. 



However, these differences were relatively small and therefore in Tuolumne, there were no 

notable differences between the tiled and non-tiled model. 

At Jemez, NM’s evaluation site, the tiled model simulated 21.2 mm (7%) less snow melt than 

the non-tiled model (Figure 7b). Less total snowmelt was primarily driven by differences in 

sublimation. The tiled model simulated more total sublimation than the non-tiled model by 15.7 

mm (Figure 7e,f). While tiles showed increased sublimation, the reason for the tiled model’s 

increased sublimation rates was different for the forest tile than the other tiles. For instance, the 

exposed, north-, and south-facing edge tiles had higher relative wind speeds compared to the 

forest tile and the non-tiled model based on different scaling of the wind speed from the 

reference height. The forest tile and the non-tiled model contained the same wind speeds 

(Section 3b). However, within the forest tile, the surface temperatures were sometimes greater 

than the air temperature in the evening (Figure 6h) due to relatively high amounts of incoming 

longwave radiation (higher than in the non-tiled model, Figure 6f) that kept the snow surface 

warm. Relatively warm snow surface temperatures at night led to unstable conditions and a 

relatively low aerodynamic resistance value. Therefore, the forest tile had the same wind speeds 

as the non-tiled model, but the relatively warm snow surface temperatures within the forest tile 

resulted in higher sublimation rates than the non-tiled model.  This hillslope scale spatial 

variability in sublimation exhibited by the tiled model (Figure 7f), due to differences in wind 

speed, shortwave radiation, and enhanced longwave radiation from the forest, was previously 

shown with observations by Musselman et al. (2008). In addition, the rank orders of sublimation 

(Figure 7f) from the tiled model simulations were consistent with high resolution, 1-m 

SnowPALM simulations grouped by under canopy, near canopy, and distant canopy pixels 

(Broxton et al., 2015). 



b. Effects on Streamflow in Tuolumne, CA and Jemez, NM 

In Tuolumne, the tiled model increased the variability in SWE within all forested grid cells 

throughout the watershed, but there was little effect on late-season streamflow. In Tuolumne, the 

tiled model produced a 1-2% increase in streamflow between April and June and a 3-4% 

decrease in streamflow after mid-June (Figure 8). In net, the tiled model simulated 0.4% less 

total annual streamflow volume than the non-tiled model. In Tuolumne, north-facing edges 

represented 4% of the watershed, and 45% of the grid cells were forested (Table 1). This 

relatively small forest and forest edge representation, combined with similar melt out dates 

between exposed, forest, and north-facing tiles explained the small effect on streamflow in 

Tuolumne. Therefore in Tuolumne, it was not critical to represent subgrid forest-SWE variability 

in order to accurately represent streamflow 

In Jemez, north-facing edges represented 20% of the watershed and 80% of the 150-m grid 

cells were at least partly forested. Streamflow in May-June (before the monsoon season) from 

the tiled model was about 18% less than the streamflow from the non-tiled model (Figure 8). In 

net, the tiled model simulated 8% less total streamflow than the non-tiled model. At both 

locations, aggregated basin-wide total evapotranspiration was nearly identical between the tiled 

model and the non-tiled model (Figure 8a b), suggesting that the difference in simulated 

streamflow in Jemez, NM between the tiled and non-tiled model was primarily due to differences 

in sublimation (Figure 7f). 

c. Chiwawa Watershed 

The Chiwawa Watershed contained no observations of SWE in the forest to evaluate 

individual tile parameters within DHSVM, as the Eastern Cascades represent a gap in forest-

snow observations (Dickerson‐Lange et al., 2021). However, the Chiwawa Watershed was 



chosen because the watershed is heavily forested, it is located within the Eastern Cascades where 

there is significant interest in silvicultural practices that decrease wildfire risk, restore ecological 

health, and increase late-season streamflow to maintain salmonid habitat requirements (Churchill 

et al., 2013; Haugo et al., 2015; Hessburg et al., 2015; WDNR, 2018; Wigmosta et al., 2015).  

At the Chiwawa, WA evaluation site, both the Tuolumne and Jemez parameters (Table 2) 

produced substantial variability in SWE (Figure 9a,b). The tiled model’s grid cell average SWE 

melted out 36 and 28 days later than the non-tiled model using the Tuolumne and Jemez 

parameters, respectively. This was due to the relatively tall trees (Table 1), which led to 

relatively high attenuation of direct beam solar radiation (Equation 2). This resulted in relatively 

slow melt rates within the forest tile, and the north-facing edge accumulated SWE throughout 

May while the south-facing and exposed tiles were melting. The tiled model simulations in the 

Chiwawa showed that snow lasted substantially longer in the forest than in the open. This finding 

was consistent with the predicted climate-forest-snow classes from Dickerson‐Lange et al. 

(2021). Furthermore, this was consistent with the framework proposed by Lundquist et al. 

(2013), who showed that locations with relatively cold mean winter temperatures have greater 

snow retention in the forest from relatively less forest-snow interception and less enhanced 

longwave radiation from the forest. 

In the Chiwawa, despite similar looking hydrographs, the tiled model led to a 15% increase 

in August and September streamflow values (Figure 9c,d). This was driven primarily by the 

forest tiles’ slow melt rate, as north-facing forest edges were only 2% of the watershed (Table 1). 

The tiled model’s annual evapotranspiration amounts were 19 mm (2.5%) less than the non-tiled 

model. Furthermore, total sublimation amounts in the tiled model were 1 mm higher than the 

non-tiled model, and total sublimation rates were low (<1% of peak SWE) in both the tiled and 



non-tiled model. Relatively small differences in evapotranspiration and sublimation between the 

tiled and non-tiled model suggested the increase in late-season streamflow in Chiwawa, WA was 

primarily due to a more detailed representation of subgrid radiation variability in forested and 

exposed areas. 

5. Discussion 

a. Existing forest characteristics and climate conditions effect on streamflow 

The explicit representation of subgrid forest-SWE variability affected late-season streamflow 

differently based on the forest characteristics and climate conditions. In the Jemez River 

Watershed, which had a relatively sparse forest and a relatively warm, sunny, and arid climate, 

the more explicit representation of the forest led to an increase in sublimation (Section 4.a.iv., 

Figure 7), which decreased simulated streamflow (Section 4.b., Figure 8). This increase in 

sublimation following the more explicit forest representation was consistent with observations 

and modeling studies in the literature. For instance, Broxton et al. (2015) and Musselman et al. 

(2008) showed spatial variability in sublimation rates. Biederman et al. (2014) and Harpold et al. 

(2014) showed that increases in solar radiation following canopy removal led to an increase in 

sublimation. While the tiled model did not change the fractional forest area in the Jemez, each 

tile had differences in the radiation budget compared to the non-tiled model, which led to an 

increase in total sublimation.  

In the Chiwawa River Watershed, which had a dense canopy with significant shortwave 

radiation attenuation and a relatively cold and wet climate (Table 1), the explicit representation 

of radiation conditions underneath the forest increased late-season streamflow (Section 4.c., 

Figure 9). In the Chiwawa, relatively cold air temperatures led to less longwave radiation 



enhancement from the forest than there was in Tuolumne or Jemez. Furthermore, the relatively 

tall trees led to more shortwave radiation attenuation, which led to later melt out dates directly 

underneath the forest and an increase in late-season streamflow. While there is a data gap in 

forest-snow observations within the Eastern Cascades, or locations with similar temperatures and 

precipitation magnitudes, the rank order of melt out dates agreed with conceptual models and our 

understanding of the physical processes (Dickerson‐Lange et al., 2021; Lundquist et al., 2013). 

In the Tuolumne River Watershed, which had less shortwave radiation attenuation from the 

forest than the Chiwawa and is not as warm and dry as the Jemez, the explicit representation of 

forest-snow variability did not have a significant impact on grid cell average snowmelt and thus 

streamflow (Figure 7,8).  

b. Forest Edge Effects on Streamflow 

To compare the effect that simulating forest edges to the effect of simulating separate below-

forest vs open snowpacks for each grid cell, the tiled model was run with the north- and south-

facing fractional areas converted to exposed areas. Therefore, the forest edges were removed 

from the tiled model, and the tiled model only simulated forest and exposed tiles. In Tuolumne 

there were nearly identical simulations between tiled model simulations that contained and did 

not contain forest edges, both of which did not have a notable difference in streamflow from the 

non-tiled model. In Jemez, the tiled model without forest edges decreased May-June streamflow 

by 20%, while the simulations with forest edges decreased May-June streamflow by 18%, 

relative to the non-tiled model. In Chiwawa, August-September streamflow increased 12% when 

forest edges were not accounted for. Meanwhile, the tiled model with forest edges increased 

streamflow by 15%. Therefore, within these three watersheds, representing forest edges did not 

notably affect streamflow simulations. Instead, it was more important to separately evolve the 



snowpack in exposed and forest tiles. Forest edges either represented a relatively small fractional 

area within the watershed (Tuolumne and Chiwawa), or the forest edges had similar melt out 

dates and had higher sublimation rates (Jemez).  

c. Chiwawa Watershed: A synthetic forest management benchmark 

Here we used the tiled model to benchmark the extent to which north-facing forest edges 

influence late-season streamflow by synthetically implementing a substantial forest management 

plan within the tiled model. To understand the influence that north-facing edges could have on 

streamflow in the Chiwawa Watershed of Washington State, we introduced east-west forest 

clearings wherever there were evergreen forest grid cells (Figure 10a). East-west forest clearings 

were introduced throughout the entire forest by adjusting the fractional area maps for each tile. 

Forest strips were designed to maximize the north-facing forest edge representation within a 90-

m grid cell. For instance, within the 90-m DHSVM grid cell, 40% of the grid cell was a forest, 

30% was a north-facing edge, which is around two-tree heights, 26% was an exposed tile, and 

4% was a south-facing edge, which is consistent with the extent of enhanced longwave radiation 

from the forest (Figure 10a). The tiled model with four snowpacks per grid cell was compared to 

the tiled model without forest edges (two snowpacks per grid cell), as done in section 5b.  

The tiled model that represented forest edges with the synthetically managed forest in the 

Chiwawa Watershed increased July streamflow by 30-33%, August streamflow by 42-43%, and 

September streamflow by 30-34% relative to the tiled model configuration that only represented 

forested and exposed tiles (Figure 10c). Ranges were based on using the forest-edge parameters 

from Tuolumne, CA or Jemez, NM (Table 2). In net, the tiled model resulted in a 1% higher total 

annual streamflow volume than the tiled model without forest edges. Therefore, north-facing 



forest edges within certain climates and forest configurations have the potential to substantially 

increase late-season streamflow. 

A similar forest management strategy was tested in the Tuolumne and Jemez. In Tuolumne, 

maximizing north-facing forest edges did not alter late-season streamflow due to similar melt out 

dates between north-facing, forest, and exposed tiles as well as much of the streamflow volume 

coming from the alpine region, which contributes a substantial amount of the late-season 

streamflow. In Jemez, we found that north-facing edges within the synthetically managed forest 

were able to substantially increase late-season streamflow but only for a two week period in late 

May and early June (see supplemental material). While in the Chiwawa we saw an increase in 

streamflow that was sustained over several months of the dry season (July – September). We 

note that implementing east-west clearings in the Jemez would likely be more difficult than in 

the Chiwawa due to a more dispersed spacing of individual trees whereas in the Chiwawa the 

forest was much denser. 

Lastly, results from the synthetic forest management benchmark were different than 

previous forest management studies. Specifically, Sun et al. (2018), who converted 24% of the 

Chiwawa watershed to 60-m diameter gaps and found an increase in late-season streamflow by 

about 20% compared to the non-managed forest. Our results focused on comparing the same two 

forest structures but with a different level of model detail.  

d. Future work 

Future work could use the tiled model for more targeted forest restoration practices, 

specifically focusing on certain slope and aspects. Additionally, the model users could consider 

altering areas based on land ownership, wilderness area restrictions, riparian areas, and areas 

where the slopes are too steep. Furthermore, future work should focus on using the tiled model 



for forest restoration practices that return the landscape to be more consistent with a natural fire-

dominated condition, which introduces a more heterogeneous spatial distribution (forest gaps and 

clumps of trees), rather than east-west forest strips.  

In all watersheds, forest edges did not significantly influence streamflow when tiled model 

simulations used the existing forest structure (Section 5.b.). However, forest edges were 

particularly important in the Chiwawa when the forest was significantly managed to increase the 

fractional area of north-facing edges (Section 5.c., Figure 10). Due the significant response in 

streamflow within the Chiwawa, additional radiation observations and/or SWE observations at 

the forest edge, and in areas directly underneath the canopy could help constrain and validate 

model parameters in Table 2 for the Chiwawa, or similar Eastern Cascade watersheds where 

there is a data gap (Dickerson‐Lange et al., 2021).  

6. Conclusions 

Impacts of representing forest-snow heterogeneity varied dramatically across different 

regions. In Tuolumne representing subgrid forest-SWE variability did not significantly affect 

streamflow, due to similar snow date disappearances between forest and exposed tiles, and a 

relatively small fractional forest area within the watershed. In Jemez, where north-facing forest 

edges represented 20% of the watershed’s forested grid cells, the tiled model resulted in a higher 

percentage of the snowpack lost to sublimation. The increase in sublimation decreased late-

season streamflow and annual streamflow volumes relative to the non-tiled model. In Chiwawa, 

WA the forest tile contained relatively slow melt rates due to increased shortwave radiation 

attenuation from relatively tall trees, and snow disappeared 24 days later compared to the non-

tiled model. As a result, late-season streamflow increased by 15% using the tiled model, 

compared to the non-tiled model.  



Representing forest-SWE variability did not notably affect annual evapotranspiration 

amounts. Therefore, differences in forest-snow processes between the tiled and non-tiled model 

were generally linked to changes in streamflow rather than changes in evapotranspiration. Within 

all three watersheds, similar results were found when the tiled model did not account for forest 

edges and only simulated forest and exposed tiles, suggesting that forest edges within the 

existing forest structure do not substantially affect late-season streamflow simulations. However, 

explicitly representing differences between snow directly underneath the canopy and exposed 

areas did affect streamflow in the Jemez and Chiwawa.  

Representing forest edges can be critical for properly simulating late-season streamflow in 

certain climates when the forest edge represents a substantial fractional area. For instance, in the 

Chiwawa, a synthetic silvicultural practice that maximized the fractional area of north-facing 

forest edges resulted in an increase of August-September streamflow by 36-38% relative to a 

tiled model configuration that only represented forested and exposed tiles. 

Therefore, when representing forest-SWE variability within the existing forest structure, 

there was an effect on late-season streamflow in some watersheds but not in others based on the 

fractional area of forest edges, forest characteristics, and the climate conditions. We encourage 

hydrologic modelers to carefully consider their watershed’s characteristics and climate to 

determine whether resolving forest-SWE variability is applicable. Lastly, we encourage those 

interested in forest restoration efforts to use the tiled model as an additional tool to understand 

how forest management strategies affect streamflow. 
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8. Data Availability 

The tiled model code within DHSVM is publicly available here: 

https://github.com/wcurrier/DHSVM-PNNL. Airborne Snow Observatory Data for the 

Tuolumne Watershed were accessed from: https://nsidc.org/data/aso/data-summaries. CDWR 

data were provided from: http://cdec.water.ca.gov/. SNOTEL data were accessed from: 

https://www.wcc.nrcs.usda.gov/snow/. A description of how to derive shortwave and longwave 

radiation data using MTCLIM can be found at https://github.com/UW-Hydro/MetSim. NCALM 

lidar data were provided from http://opentopography.org/. ASO data are available at 

https://nsidc.org/data/aso/data‐summaries. Chiwawa lidar data can be found at: 

https://lidarportal.dnr.wa.gov/. Livneh data can be downloaded at 

https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html. WRF data for Jemez can be 

downloaded at: https://rda.ucar.edu/datasets/ds612.0/. CUES data can be downloaded from: 

https://snow.ucsb.edu/index.php/level-2-model-ready/. Tuolumne streamflow and forcing data 

can be downloaded from: https://depts.washington.edu/mtnhydr/Pages/Data/yosemite.shtml. All 

other data that were not publicly available but used within this paper were uploaded to a Zenodo 

repository at: (to be finalized after review of this manuscript). 
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Tables 

Table 1: Meteorological and watershed forest characteristics. †Mean tree height was calculated 

where lidar data was available within the watershed and the average height where vegetation was 

greater than 2 m. ‡Fraction of the watershed that is forested based on high-resolution (1-3 m) 

maps from NAIP imagery and lidar.  §Fraction of the watershed that is forested based on a 

coarsened (90-150 m) NLCD vegetation map. 

 Upper Tuolumne 

River Watershed, 

CA 

Jemez River 

Watershed, NM 

 

 

Chiwawa River 

Watershed, WA 

General Watershed and Meteorological Statistics 

Watershed Size [km2] 186 1222 446 

Median and Range in Elevation 

[m] 

3158 

1314 

 

2612 

1719 

 

1365 

2034 

 

Average Incoming Shortwave 

Radiation (Nov-April) [W m-2] 

175 223 153 

Mean Winter Temperature 

(Nov-Mar) [°C] 

-5.2 -3.0 -5.5 

 

Basin Total Winter Precipitation 

(Nov-Mar) [mm] 

723 324 1154 

 

Vegetation Characteristics I: Calculations based on high-resolution (1-3 m) vegetation maps 

derived from lidar or NAIP imagery. 

Mean Tree Height [m] † 8.3 10.2 17 

Watershed Fraction‡ : Forested 33% 46% 80% 

Watershed Fraction: North-

Facing Edge 

4% 17% 2% 

Watershed Fraction: South-

Facing Edge 

1% 1% 2% 

Watershed Fraction: Exposed 62% 36% 16% 

Vegetation Characteristics II: Calculations based on coarsened (90-150 m) grid cells.  

Fraction of Watershed§: Forested  45% 80% 84% 

Average fraction of forest grid 

cells: Forested (Forest Density) 

69% 59% 87% 

Average fraction of forest grid 

cells: North Facing 

6% 20% 2% 

Average fraction of forest grid 

cells: South Facing 

2% 1% 2% 

Average fraction of forest grid 

cells: Exposed 

23% 19% 11% 

  



Table 2: Parameters introduced to model forest edges at Tuolumne, CA and Jemez, NM. See 

Section 3.c. for more details. 

Parameters introduced to model the 

forest edges 

Tuolumne, CA 

 

Jemez, NM  

 

Fractional North Facing Coverage (𝐹𝑠𝑓) 

Controls the amount longwave radiation 

received at the north facing edge   

0.15 0.4 

Fractional South Facing Coverage (𝐹𝑛𝑓) 

Controls the amount longwave radiation 

received at the south facing edge   

0.2 0.4 

Diffuse Radiation Attenuation NF (𝜏𝑛𝑓) 

Extinction of diffuse radiation at the north 

facing edge   

0.75 0.75 

Diffuse Radiation Attenuation SF (𝜏𝑠𝑓) 

Extinction of diffuse radiation at the south 

facing edge   

0.75 0.75 

NF Edge Radiation Multiplier (𝜏𝑚𝑢𝑙𝑡) 

Used to provide more direct beam 

radiation on the north-facing edge than 

directly underneath the forest 

1.0 0.2 

  



Table 3: Simulated peak SWE, snow disappearance date (SDD), and melt rates (Peak SWE 

divided by number of days between peak SWE and SDD) for each tile component and the non-

tiled model at the evaluation grid cell in each watershed. †Average from the Jemez and 

Tuolumne Parameters  

Tuolumne, CA: 

Dana Meadows 

South 

Peak SWE 

[mm] 

SDD 

[YYYY-MM-DD] 

Melt Rate 

[mm/day] 

Non-Tiled Model 539 2016-06-07 8.1 

Tiled Model 

Average 

531 2016-06-08 6.8 

North Facing 638 2016-06-07 9.6 

South Facing 500 2016-05-19 7.9 

Forest 455 2016-06-08 5.8 

Exposed 595 2016-06-04 8.0 

Jemez, NM: 

Evaluation Site 

-- -- -- 

Non-Tiled Model 291 2010-05-16 5.8 

Tiled Model 

Average 

281 2010-05-16 5.6 

North Facing 334 2010-05-16 6.6 

South Facing 267 2010-04-16 8.4 

Forest 213 2010-05-12 4.6 

Exposed 328 2010-05-08 7.8 

Chiwawa, WA: 

Evaluation Site† 

-- -- -- 

Non-Tiled Model 860 2011-05-31 13.6 

Tiled Model 

Average 

842 2011-07-07 8.5 

North Facing 1320 2011-07-07 18.3 

South Facing 1002 2011-05-11 19.3 

Forest 747 2011-06-23 12.8 

Exposed 1067 2011-05-15 8.2 

  



Figure Legends 

Figure 1: A) Deeper snow north of the canopy mask, with shallower snow on the south-side of 

the trees in Jemez Caldera, NM, USA. B) Spatial heterogeneity of snow is accounted for with 

four simulated snowpacks per grid cell driven by unique radiation conditions. Each snowpack 

accumulates and melts independently, providing water to a shared 3-layer soil reservoir.  

 

Figure 2: Basin delineations, fractional forest maps derived from lidar, NAIP, and NLCD 2011 

data used within the non-tiled and tiled version of DHSVM for three different watersheds. 

Watersheds organized based on elevation. Snow pillow locations were used for evaluating SWE 

simulations in exposed areas during model calibration in addition to the streamflow locations. 

The tiled model was evaluated at the evaluation sites. 

 

Figure 3: Example of using NAIP imagery to calculate NDVI and subsequently create a canopy 

mask. The resulting classification map used methods described in (Currier & Lundquist, 2018) to 

classify north (NF) and south-facing (SF) edges, in addition to exposed (EXP) and forest (FOR) 

areas. NAIP imagery agreed at 80 percent of the pixels within the 2-km domain. The 

classification map was further masked out using NLCD 2011 vegetation classifications (Section 

2.d.). Classification map shown in Figure 3 is before masking with the NLCD 2011 map. Black 

lines on the classification map represent 150-m grid boxes. 

 

Figure 4: Example of direct beam radiation for different components of the tiled model. 

Equations 7-10 were based on the equation for net shortwave radiation at the understory in the 

non-tiled DHSVM shown here (Equation 1). 



 

Figure 5: Model tuning results at snow pillow and stream gages (Figure 1). Top Row: Upper 

Tuolumne simulations during an average water year – WY 2016. Middle Row: Jemez River 

Watershed in WY 2010 when lidar observations of snow depth exist. Bottom Row: Chiwawa, 

WA watershed simulations of SWE and streamflow. 

 

Figure 6: a-b) Simulated SWE within a single grid cell for individual tiles compared to lidar-

derived SWE estimates (mean of all classified lidar pixels within the DHSVM grid cell) as well 

as grid cell average SWE (amongst the four tiles) and the non-tiled model’s simulation of SWE 

with the same forest configuration for Tuolumne, CA and Jemez, NM. c-j) Different components 

of the energy balance for individual tile components. Note: The tiled model’s average radiation 

(weighted by the fractional area of each tile) was not used within the tiled model but is shown for 

comparison. 

Figure 7: a-b) Simulated cumulative hydrologic fluxes between the tiled model (dotted lines) 

and the non-tiled model (solid lines) for an individual grid cell within the Tuolumne, CA and 

Jemez, NM watersheds. Hydrologic fluxes were overlaid with the SWE simulations shown in 

Figure 6, to show the timing of individual fluxes. Legend for simulated and observed SWE in 

plots a and b shown in the Jemez, NM plot. Note: Difference in scale along the y-dimension 

between a and b. c-d) Fractional soil moisture between the tiled model and the non-tiled model. 

e-f) Cumulative sublimation rates from the snowpack for individual components of the tiled 

model and the non-tiled model. 

 



Figure 8: Top row: Basin average SWE for individual tile components along with basin average 

evapotranspiration. Note: Basin average SWE for the non-tiled model, d model average, and 

exposed area represent SWE in grid cells that are not tiled as well as they include non-forested 

areas. For instance, the tiled model was only run where the grid cells were forested. Middle row: 

Simulated daily streamflow values between the non-tiled and tiled model compare to observed 

streamflow. Bottom row: The streamflow ratio between the tiled model and non-tiled model. 

 

Figure 9: a-b) Simulated SWE for individual tile components at the evaluation site (Figure 1). 

Top left uses model parameters introduced for the tiled model from Tuolumne, CA while the top 

right uses parameters from Jemez, NM (Table 3). c) Simulated daily streamflow values between 

the non-tiled and tiled model (with both the Tuolumne and Jemez parameters) compare to 

observed streamflow. d) The streamflow ratio between the tiled model and non-tiled model for 

both configuration of the tiled model in Chiwawa, WA. 

 

Figure 10: a) Conceptual diagram of the forest management strategy within an individual tiled 

model grid cell. Note: the grid cell is not drawn to scale, exaggerated length wise. b) Simulated 

daily streamflow values with different model configurations compared to observed streamflow. 

Note: Tiled model with Tuolumne parameters is not shown due to similarity in results to the tile 

model with Jemez parameters. c) Streamflow ratio between tiled model with a managed forest 

and the tiled model without forest edges and a managed forest. 

 

 

 



 
Figure 1: A) Deeper snow north of the canopy mask, with shallower snow on the south-side of 

the trees in Jemez Caldera, NM, USA. B) Spatial heterogeneity of snow is accounted for with 

four simulated snowpacks per grid cell driven by unique radiation conditions. Each snowpack 

accumulates and melts independently, providing water to a shared 3-layer soil reservoir.  



 
Figure 2: Basin delineations, fractional forest maps derived from lidar, NAIP, and NLCD 2011 

data used within the non-tiled and tiled version of DHSVM for three different watersheds. 

Watersheds organized based on elevation. Snow pillow locations were used for evaluating SWE 

simulations in exposed areas during model calibration in addition to the streamflow locations. 

The tiled model was evaluated at the evaluation sites. 



 

Figure 3: Example of using NAIP imagery to calculate NDVI and subsequently create a canopy 

mask. The resulting classification map used methods described in (Currier & Lundquist, 2018) to 

classify north (NF) and south-facing (SF) edges, in addition to exposed (EXP) and forest (FOR) 

areas. NAIP imagery agreed at 80 percent of the pixels within the 2-km domain. The 

classification map was further masked out using NLCD 2011 vegetation classifications (Section 



2.d.). Classification map shown in Figure 3 is before masking with the NLCD 2011 map. Black 

lines on the classification map represent 150-m grid boxes. 



  

 

 
 

Figure 4: Example of direct beam radiation for different components of the tiled model. 

Equations 7-10 were based on the equation for net shortwave radiation at the understory in the 

non-tiled DHSVM shown here (equation 1). 
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Figure 5: Model tuning results at snow pillow and stream gauges (Figure 1). Top Row: Upper 

Tuolumne simulations during an average water year – WY 2016. Middle Row: Jemez River 

Watershed in WY 2010 when lidar observations of snow depth exist. Bottom Row: Chiwawa, 

WA watershed simulations of SWE and streamflow. 

 



 

 

 



Figure 6: a-b) Simulated SWE within a single grid cell for individual tiles compared to lidar-

derived SWE estimates (mean of all classified lidar pixels within the DHSVM grid cell) as well 

as grid cell average SWE (amongst the four tiles) and the non-tiled model’s simulation of SWE 

with the same forest configuration for Tuolumne, CA and Jemez, NM. c-j) Different components 

of the energy balance for individual tile components. Note: The tiled model’s average radiation 

(weighted by the fractional area of each tile) was not used within the tiled model but is shown for 

comparison. 

 

 

Figure 7: a-b) Simulated cumulative hydrologic fluxes between the tiled model (dotted lines) 

and the non-tiled model (solid lines) for an individual grid cell within the Tuolumne, CA and 

Jemez, NM watersheds. Hydrologic fluxes were overlaid with the SWE simulations shown in 

Figure 6, to show the timing of individual fluxes. Legend for simulated and observed SWE in 

plots a and b shown in the Jemez, NM plot. Note: Difference in scale along the y-dimension 

between a and b. c-d) Fractional soil moisture between the tiled model and the non-tiled model. 

e-f) Cumulative sublimation rates from the snowpack for individual components of the tiled 

model and the non-tiled model. 

  



 

Figure 8: Top row: Basin average SWE for individual tile components along with basin average 

evapotranspiration. Note: Basin average SWE for the non-tiled model, d model average, and 

exposed area represent SWE in grid cells that are not tiled as well as they include non-forested 

areas. For instance, the tiled model was only run where the grid cells were forested. Middle row: 

Simulated daily streamflow values between the non-tiled and tiled model compare to observed 

streamflow. Bottom row: The streamflow ratio between the tiled model and non-tiled model. 
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Top left uses model parameters introduced for the tiled model from Tuolumne, CA while the top 4 

right uses parameters from Jemez, NM (Table 3). c) Simulated daily streamflow values between 5 

the non-tiled and tiled model (with both the Tuolumne and Jemez parameters) compare to 6 

observed streamflow. d) The streamflow ratio between the tiled model and non-tiled model for 7 

both configuration of the tiled model in Chiwawa, WA. 8 
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 10 
Figure 10: a) Conceptual diagram of the forest management strategy within an individual tiled 11 

model grid cell. Note: the grid cell is not drawn to scale, exaggerated length wise. b) Simulated 12 

daily streamflow values with different model configurations compared to observed streamflow. 13 

Note: Tiled model with Tuolumne parameters is not shown dude to similarity in results to the tile 14 
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model with Jemez parameters. c) Streamflow ratio between tiled model with a managed forest 15 

and the tiled model without forest edges and a managed forest. 16 

 17 
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